Vorträge
Vorträge 531 bis 540 von 679 | Gesamtansicht
Datum | Zeit | Ort | Vortrag |
---|---|---|---|
16.06.10 | 15:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Inducing dimension reduction for efficientlysolving large linear systems of equations Gerard L.G. Sleijpen, Department of Mathematics, Utrecht University, Utrecht, The Netherlands The Induced Dimension Reduction method was proposed in 1980 by Peter Sonneveld as an iterative method for solving large non-symmetric linear systems of equations. IDR can be considered as the predecessor of methods like CGS (Conjugate Gradient Squared [Sonneveld '89]) and Bi-CGSTAB (Bi-Conjugate Gradients STABilized [van der Vorst '92]). All three methods are based on efficient short recurrences. An important similarity between the methods is that they use orthogonalization with respect to a fixed `shadow residual'. Of the three methods, Bi-CGSTAB has gained the most popularity, and is probably still the most widely used short recurrence method for solving non-symmetric systems. |
14.04.10 | 15:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Inverse Iteration, Newton-Abschätzungen und Anwendung auf Rayleigh-Quotienten-Iterationen bei nichtlinearen Eigenwertproblemen Prof. Hubert Schwetlick, TU Dresden, Institut für Numerische Mathematik Bekanntlich liefert ein Schriitt $(u,\theta) \mapsto u_+^{InvIt}$ der Inversen Iteration für das nichtlineare Eigenwertproblem $T(\lambda)x=0$ dieselbe Richtung wie ein Schritt $(u,\theta) \mapsto (u_+^{Newt},\theta_+^{Newt})$ des Newtonverfahrens für das erweiterte System $T(\lambda)x=0,\;w^Hx=1$ mit einem geeigneten Skalierungsvektor $w$, d.h., es gilt $\mbox{span}\,\{u_+^{InvIt}\}=\mbox{span}\,\{u_+^{Newt}\}$. Es liegt daher nahe, zur Abschätzung der Verbesserung der Eigenvektorapproximation $u$ durch die Inverse Iteration Newton-Techniken zu verwenden. Es wird gezeigt, dass dies zu genauen Abschätzungen führt, wenn explizit mit dem Restglied zweiter Ordnung gearbeitet und dessen spezielle Produktstruktur berücksichtigt wird wie das von \textsc{Heinz Unger} [50] erstmalig (und ohne publizierten Beweis) für das lineare Problem $T(\lambda)=A-\lambda I$ getan worden ist. |
17.02.10 | 14:00 | Schwarzenbergstrasse 95, Raum 3.053 |
wird noch bekannt gegeben Michael Dudzinski |
03.02.10 | 13:00 | Schwarzenbergstrasse 95, Raum 3.053 |
On the motion of several rigid bodies in an incompressible non-Newtonian fluid* Prof. Sarka Necasova, Institute of Mathematics of the Academy of Sciences, Praha, Czech Republic The motion of one or several rigid bodies in a viscous fluid occupying a bounded domain $\Omega in R^3$ represents an interesting theoretical problem featuring, among others, possible contacts of two or more solid objects. We consider the motion of several rigid bodies in a non-Newtonian fluid of a power-law type. Our main result establishes the existence of global-in-time solutions of the associated evolutionary system, when collisions of two or more rigid objects do not appear in a finite time unless they were present initially. |
27.01.10 | 15:00 | Schwarzenbergstrasse 95, Raum 3.053 |
A self-similar solution for the porous medium equation in a two-component domain* Prof. Jan Filo, Comenius University, Bratislava, Slovak Republic We solve a particular system of nonlinear ODEs defined on the two different components of the real line connected by the nonlinear contact condition |
16.12.09 | 15:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf Bifurcations in large scale problems* Prof. Dr. Karl Meerbergen, Katholieke Universiteit, Leuven The detection of a Hopf bifurcation in a large scale dynamical system that depends on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large sparse eigenvalue problems. Guckenheimer et. al. (SINUM, 34, (1997) pp. 1-21) proposed a method that computes a value of the parameter that corresponds to a Hopf point without actually computing right-most eigenvalues. This method utilises a certain sum of Kronecker products and involves the solution of matrices of squared dimension, which is impractical for large scale applications. However, if good starting guesses are available for the parameter and the purely imaginary eigenvalue at the Hopf point, then efficient algorithms are available. In this paper, we propose a method for obtaining such good starting guesses, based on finding purely imaginary eigenvalues of a two-parameter eigenvalue problem (possibly arising after a linearisation process). The problem is formulated as an inexact inverse iteration method that requires the solution of a sequence of Lyapunov equations with low rank right hand sides. It is this last fact that makes the method feasible for large systems. The power of our method is tested on numerical examples. |
04.12.09 | 14:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Introduction of IDR-based Jacobi(s), Gauss-Seidel(s) and SOR(s) methods and its estimation Prof. Seiji Fujino, Research Institute for Information Technology, Kyushu University, Fukuoka, Kyushu, Japan The conventional SOR (Successive Over-Relaxation) method originated from the dissertation by D. Young in 1950. After that, the SOR method has been often used for the solution of problems which stem from various applications. The SOR method, however, has many issues on possibility of the solution because of no robustness of convergence of the SOR method. |
16.09.09 | 16:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Ein Verfahren zur Regularisierung von vollständigen Ausgleichsproblemen Moritz Augustin |
16.09.09 | 15:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Die Newton Methode und Rayleigh Quotienten Interation für das Totale Least Squares Problem Fatih Berber |
09.09.09 | 10:00 | Schwarzenbergstrasse 95, Raum 3.053 |
Über den Einfluss eines inexakten
Matrix-Vektor-Produkts auf Fehlerschätzungen im
Verfahren der konjugierten Gradienten Martin Müller |
* Vortrag im Rahmen des Kolloquiums für Angewandte Mathematik