A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter

Heinrich Voss
voss@tuhh.de

Joint work with Seyyed Abbas Mohammadi, Yasouj Univ.

Hamburg University of Technology
Institute of Mathematics
Outline

1. Introduction
2. Existence result for nonlinear problem
3. A decent approach
4. Numerical examples
Outline

1. Introduction
2. Existence result for nonlinear problem
3. A decent approach
4. Numerical examples
Introduction

Problem definition

Let Ω be a bounded, connected, open set in \mathbb{R}^N with smooth boundary, and let $\alpha, \beta : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be continuous, positive functions with $\alpha(\lambda) > \beta(\lambda)$ for every $\lambda \geq 0$.

Assume that A is a positive number, $0 < A < |\Omega|$, where $|\cdot|$ denotes the Lebesgue measure.

Find a measurable set $D \subset \Omega$ with $|D| = A$ such that the principal eigenvalue of

$$-\text{div} \left(\alpha(\lambda) \chi_D + \beta(\lambda) \chi_{D^c} \right) \nabla u = \lambda u \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega \quad (1)$$

is as small as possible.

Such nonlinear eigenvalue problems appear as the Hamiltonian equation governing some quantum dot nanostructures, where $\alpha(\lambda)$ and $\beta(\lambda)$ correspond to the effective mass of the carrier (electron or hole) and the surrounding matrix, respectively, and λ is the ground state energy.
Let Ω be a bounded, connected, open set in \mathbb{R}^N with smooth boundary, and let $\alpha, \beta : \mathbb{R}^+ \to \mathbb{R}^+$ be continuous, positive functions with $\alpha(\lambda) > \beta(\lambda)$ for every $\lambda \geq 0$.

Assume that A is a positive number, $0 < A < |\Omega|$, where $|\cdot|$ denotes the Lebesgue measure.

Find a measurable set $D \subset \Omega$ with $|D| = A$ such that the principle eigenvalue of

$$-\text{div}((\alpha(\lambda)\chi_D + \beta(\lambda)\chi_{D^c})\nabla u) = \lambda u \quad \text{in} \ \Omega, \quad u = 0 \quad \text{on} \ \partial \Omega \quad (1)$$

is as small as possible.
Let \(\Omega \) be a bounded, connected, open set in \(\mathbb{R}^N \) with smooth boundary, and let \(\alpha, \beta : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) be continuous, positive functions with \(\alpha(\lambda) > \beta(\lambda) \) for every \(\lambda \geq 0 \).

Assume that \(A \) is a positive number, \(0 < A < |\Omega| \), where \(|\cdot| \) denotes the Lebesgue measure.

Find a measurable set \(D \subset \Omega \) with \(|D| = A \) such that the principle eigenvalue of

\[
- \text{div}((\alpha(\lambda) \chi_D + \beta(\lambda) \chi_{D^c}) \nabla u) = \lambda u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \tag{1}
\]

is as small as possible.

Such nonlinear eigenvalue problems appear as the Hamiltonian equation governing some quantum dot nanostructures, where \(\alpha(\lambda) \) and \(\beta(\lambda) \) correspond to the effective mass of the carrier (electron or hole) and the surrounding matrix, respectively, and \(\lambda \) is the ground state energy.
Problem (1) is in fact a generalization of the linear case where α and β are two positive constants, $\alpha > \beta$. In this case the optimization problem is the problem of optimal design where two material phases are to be distributed inside a fixed region Ω.
Problem (1) is in fact a generalization of the linear case where α and β are two positive constants, $\alpha > \beta$. In this case the optimization problem is the problem of optimal design where two material phases are to be distributed inside a fixed region Ω.

For general Ω this problem is known to often have no solution (Lucie (1975), Murat & Tartar (1985)).
Problem (1) is in fact a generalization of the linear case where α and β are two positive constants, $\alpha > \beta$. In this case the optimization problem is the problem of optimal design where two material phases are to be distributed inside a fixed region Ω.

For general Ω this problem is known to often have no solution (Lucie (1975), Murat & Tartar (1985)).

Existences of a radially symmetric optimal set for the linear case was established if $\Omega = B(0, R)$ is a ball with radius \mathbb{R} centered at the origin by Alvino, Trombetti & P.-L. Lions (1989).
Problem (1) is in fact a generalization of the linear case where α and β are two positive constants, $\alpha > \beta$. In this case the optimization problem is the problem of optimal design where two material phases are to be distributed inside a fixed region Ω.

For general Ω this problem is known to often have no solution (Lucie (1975), Murat & Tartar (1985)).

Existences of a radially symmetric optimal set for the linear case was established if $\Omega = B(0, R)$ is a ball with radius \mathbb{R} centered at the origin by Alvino, Trombetti & P.-L. Lions (1989).

A simpler existence proof based on rearrangement techniques was given by Conca, Mahavedon & Sanz (2009).
For the one dimensional case, Krein (1955) has shown that the unique minimizer of problem (1) is $B(0, R^*)$ for some $R^* \in (0, R)$.
Linear case

For the one dimensional case, Krein (1955) has shown that the unique minimizer of problem (1) is $B(0, R^*)$ for some $R^* \in (0, R)$.

This suggests for higher dimensions that $B(0, R^*)$ is a natural candidate to be the optimal domain, and this conjecture has been supported by numerical tests by Conca, Mahavedon & Sanz (2009a).
For the one dimensional case, Krein (1955) has shown that the unique minimizer of problem (1) is $B(0, R^*)$ for some $R^* \in (0, R)$.

This suggests for higher dimensions that $B(0, R^*)$ is a natural candidate to be the optimal domain, and this conjecture has been supported by numerical tests by Conca, Mahavedon & Sanz (2009a).

In addition, it was shown by Dambrine & Kateb (2011) employing second order shape derivative calculus that $B(0, R^*)$ is a local minimum for the optimization problem when A is sufficiently small.
For the one dimensional case, Krein (1955) has shown that the unique minimizer of problem (1) is $B(0, R^*)$ for some $R^* \in (0, R)$.

This suggests for higher dimensions that $B(0, R^*)$ is a natural candidate to be the optimal domain, and this conjecture has been supported by numerical tests by Conca, Mahavedon & Sanz (2009a).

In addition, it was shown by Dambrine & Kateb (2011) employing second order shape derivative calculus that $B(0, R^*)$ is a local minimum for the optimization problem when A is sufficiently small.

In spite of the above evidences, it was established in Conca, Lurian & Mahadevan (2012) that the conjecture is not true at least in two- or three-dimensional spaces when α and β are close to each other (low contrast regime) and A is sufficiently large. This makes clear that the optimal domain can not be a ball.
For the one dimensional case, Krein (1955) has shown that the unique minimizer of problem (1) is $B(0, R^*)$ for some $R^* \in (0, R)$.

This suggests for higher dimensions that $B(0, R^*)$ is a natural candidate to be the optimal domain, and this conjecture has been supported by numerical tests by Conca, Mahavedon & Sanz (2009a).

In addition, it was shown by Dambrine & Kateb (2011) employing second order shape derivative calculus that $B(0, R^*)$ is a local minimum for the optimization problem when A is sufficiently small.

In spite of the above evidences, it was established in Conca, Lurian & Mahadevan (2012) that the conjecture is not true at least in two- or three-dimensional spaces when α and β are close to each other (low contrast regime) and A is sufficiently large. This makes clear that the optimal domain can not be a ball.

Based on the properties of Bessel functions, it has been proved by Mohammadi & Yousefnezhad (2014) that the conjecture is also not true for all dimensions $N \geq 2$.
Outline

1. Introduction
2. Existence result for nonlinear problem
3. A decent approach
4. Numerical examples
Nonlinear problem

\[- \text{div}(G(\lambda, x) \nabla u) = \lambda u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \]

where

\[G(\lambda, \cdot) \text{ is bounded for every } \lambda \geq 0, \]
\[G(\cdot, x) \text{ is a continuous function.} \]
Nonlinear problem

\[- \text{div} (G(\lambda, x) \nabla u) = \lambda u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \quad (2)\]

where

\[G(\lambda, \cdot) \text{ is bounded for every } \lambda \geq 0, \quad (3)\]
\[G(\cdot, x) \text{ is a continuous function.} \quad (4)\]

Multiplying (2) by \(\varphi \in H^1_0(\Omega)\) and integrating by parts, one gets the following variational formulation of (1):

Find \(\lambda \in \mathbb{R}\) and \(u \in H^1_0(\Omega), u \neq 0\) such that

\[
\int_{\Omega} G(\lambda, x) \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} u \varphi \, dx, \quad (5)
\]

for all \(\varphi \in H^1_0(\Omega)\).
Nonlinear problem

\[- \text{div} (G(\lambda, x) \nabla u) = \lambda u \quad \text{in} \ \Omega, \quad u = 0 \quad \text{on} \ \partial \Omega \quad (2)\]

where

\[G(\lambda, \cdot) \text{ is bounded for every } \lambda \geq 0, \quad (3)\]
\[G(\cdot, x) \text{ is a continuous function.} \quad (4)\]

Multiplying (2) by \(\varphi \in H^1_0(\Omega) \) and integrating by parts, one gets the following variational formulation of (1):

Find \(\lambda \in \mathbb{R} \) and \(u \in H^1_0(\Omega), u \neq 0 \) such that

\[\int_{\Omega} G(\lambda, x) \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} u \varphi \, dx, \quad (5)\]

for all \(\varphi \) in \(H^1_0(\Omega) \).

Thanks to the Riesz representation theorem, (2) is equivalent to the nonlinear eigenvalue problem

\[\mathcal{F}(\lambda) u = 0, \quad (6)\]

where \(\mathcal{F} : H^1_0(\Omega) \rightarrow H^1_0(\Omega) \), is a family of self-adjoint and bounded operators for \(\lambda \geq 0 \).
Variational characterization

Theorem: Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. Consider the nonlinear eigenvalue problem $\mathcal{F}(\lambda)u = 0$, where $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ is a family of self-adjoint and bounded operators on \mathcal{H} depending continuously on a parameter $\lambda \in J$, and J is an open real interval.
Variational characterization

Theorem: Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. Consider the nonlinear eigenvalue problem $\mathcal{F}(\lambda)u = 0$, where $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ is a family of self-adjoint and bounded operators on \mathcal{H} depending continuously on a parameter $\lambda \in J$, and J is an open real interval.

Assume that

(A_1) for every fixed $u \in \mathcal{H}$, $u \neq 0$ the real equation

$$f(\lambda; u) := \langle \mathcal{F}(\lambda)u, u \rangle = 0$$

has exactly one solution $\lambda := P(u) \in J$.

\[(7) \]
Theorem: Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. Consider the nonlinear eigenvalue problem $\mathcal{F}(\lambda)u = 0$, where $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ is a family of self-adjoint and bounded operators on \mathcal{H} depending continuously on a parameter $\lambda \in J$, and J is an open real interval.

Assume that

(A1) for every fixed $u \in \mathcal{H}$, $u \neq 0$ the real equation

$$f(\lambda; u) := \langle \mathcal{F}(\lambda)u, u \rangle = 0$$

has exactly one solution $\lambda := \mathcal{P}(u) \in J$.

(A2) for every $u \neq 0$ and every $\lambda \in J$ with $\lambda \neq \mathcal{P}(u)$ it holds that

$$(\lambda - \mathcal{P}(u))f(\lambda, u) > 0,$$
Variational characterization

Theorem: Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. Consider the nonlinear eigenvalue problem $\mathcal{F}(\lambda)u = 0$, where $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ is a family of self-adjoint and bounded operators on \mathcal{H} depending continuously on a parameter $\lambda \in J$, and J is an open real interval.

Assume that

(A1) for every fixed $u \in \mathcal{H}$, $u \neq 0$ the real equation

$$f(\lambda; u) := \langle \mathcal{F}(\lambda)u, u \rangle = 0$$

has exactly one solution $\lambda := \mathcal{P}(u) \in J$.

(A2) for every $u \neq 0$ and every $\lambda \in J$ with $\lambda \neq \mathcal{P}(u)$ it holds that

$$(\lambda - \mathcal{P}(u))f(\lambda, u) > 0,$$

(A3) for every $\lambda \in J$ the supremum of the essential spectrum of $\mathcal{F}(\lambda)$ is negative.
Theorem: Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot , \cdot \rangle$. Consider the nonlinear eigenvalue problem $\mathcal{F}(\lambda)u = 0$, where $\mathcal{F} : \mathcal{H} \rightarrow \mathcal{H}$ is a family of self-adjoint and bounded operators on \mathcal{H} depending continuously on a parameter $\lambda \in J$, and J is an open real interval.

Assume that

(A_1) for every fixed $u \in \mathcal{H}$, $u \neq 0$ the real equation

$$f(\lambda; u) := \langle \mathcal{F}(\lambda)u, u \rangle = 0$$

has exactly one solution $\lambda := \mathcal{P}(u) \in J$.

(A_2) for every $u \neq 0$ and every $\lambda \in J$ with $\lambda \neq \mathcal{P}(u)$ it holds that

$$(\lambda - \mathcal{P}(u))f(\lambda, u) > 0,$$

(A_3) for every $\lambda \in J$ the supremum of the essential spectrum of $\mathcal{F}(\lambda)$ is negative.

Then problem (6) has a countable set of eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots$, and it holds that

$$\lambda_j = \min_{\dim V=j} \max_{0 \neq u \in V} \mathcal{P}(u).$$
Variational characterization

The requirements (A_1), (A_2) and (A_3) are inartificial generalizations for the ones for linear eigenvalue problems.
The requirements \((A_1), (A_2)\) and \((A_3)\) are inartificial generalizations for the ones for linear eigenvalue problems.

\(f(\lambda; u) = 0\) defines a functional \(P\) on \(H \setminus \{0\}\), which generalizes the Rayleigh quotient for linear eigenvalue problems with \(F(\lambda) = \lambda I - A\), and therefore it is called Rayleigh functional of (6), and \((A_2)\) generalizes the definiteness requirement for linear pencils \(F(\lambda) = \lambda B - A\).
Variational characterization

The requirements \((A_1), (A_2)\) and \((A_3)\) are inartificial generalizations for the ones for linear eigenvalue problems.

\(f(\lambda; u) = 0\) defines a functional \(P\) on \(H \setminus \{0\}\), which generalizes the Rayleigh quotient for linear eigenvalue problems with \(F(\lambda) = \lambda I - A\), and therefore it is called Rayleigh functional of (6), and \((A_2)\) generalizes the definiteness requirement for linear pencils \(F(\lambda) = \lambda B - A\).

The minmax characterization applies to \(G\) if we further assume

\[G(0, \cdot) > 0 \text{ a.e. in } \Omega, \quad (10) \]

and that \(G(\lambda, x)\) is a decreasing function with respect to \(\lambda\) for every \(x \in \Omega\), i.e.

\[G(\lambda_1, \cdot) \geq G(\lambda_2, \cdot) \text{ a.e. in } \Omega \text{ for } \lambda_1, \lambda_2 \geq 0 \text{ with } \lambda_1 < \lambda_2. \quad (11) \]
Variational characterization

The requirements \((A_1), (A_2)\) and \((A_3)\) are inartificial generalizations for the ones for linear eigenvalue problems.

\(f(\lambda; u) = 0\) defines a functional \(P\) on \(H \setminus \{0\}\), which generalizes the Rayleigh quotient for linear eigenvalue problems with \(F(\lambda) = \lambda I - A\), and therefore it is called Rayleigh functional of (6), and \((A_2)\) generalizes the definiteness requirement for linear pencils \(F(\lambda) = \lambda B - A\).

The minmax characterization applies to \(G\) if we further assume

\[G(0, \cdot) > 0 \text{ a.e. in } \Omega, \]

(10)

and that \(G(\lambda, x)\) is a decreasing function with respect to \(\lambda\) for every \(x \in \Omega\), i.e.

\[G(\lambda_1, \cdot) \geq G(\lambda_2, \cdot) \text{ a.e. in } \Omega \text{ for } \lambda_1, \lambda_2 \geq 0 \text{ with } \lambda_1 < \lambda_2. \]

(11)

Then obviously

\[f(\lambda, u) := \langle F(\lambda)u, u \rangle = \lambda \|u\|^2_{L^2(\Omega)} - \int_{\Omega} G(\lambda, x)|\nabla u|^2 \, dx, \]

(12)

for \(u \neq 0\) is strictly monotonically increasing and \(f(0, u) < 0\).
Theorem: Suppose that conditions (3), (4), (10) and (11) hold. Then the principal eigenvalue of (1) allows for a variational formulation

$$\lambda = \min_{v \in H^1_0(\Omega)} P(v) = \int_{\Omega} G(\lambda, x) |\nabla u|^2 dx,$$

with u as the associated eigenfunction.

From the variational characterization for the first eigenvalue we obtain that the optimization problem (1) has a solution if $\Omega = B(0, R)$. Note that $G(\lambda, x) = \alpha(\lambda) \chi_D + \beta(\lambda) \chi_{D^c}$ satisfies conditions (3), (4), (10) and (11) if the continuous functions $\alpha(\cdot)$ and $\beta(\cdot)$ are positive and decreasing, and $\alpha(\lambda) \geq \beta(\lambda)$ for every $\lambda \geq 0$.
Theorem: Suppose that conditions (3), (4), (10) and (11) hold. Then the principal eigenvalue of (1) allows for a variational formulation

\[
\lambda = \min_{v \in H_0^1(\Omega)} \mathcal{P}(v) = \int_{\Omega} G(\lambda, x)|\nabla u|^2 \, dx, \quad (13)
\]

with \(u\) as the associated eigenfunction.

From the variational characterization for the first eigenvalue we obtain that the optimization problem (1) has a solution if \(\Omega = B(0, R)\).
Theorem: Suppose that conditions (3), (4), (10) and (11) hold. Then the principal eigenvalue of (1) allows for a variational formulation

\[\lambda = \min_{v \in H_0^1(\Omega)} \mathcal{P}(v) = \int_{\Omega} G(\lambda, x) |\nabla u|^2 \, dx, \]
\[\|v\|_{L^2(\Omega)} = 1 \]

with \(u \) as the associated eigenfunction.

From the variational characterization for the first eigenvalue we obtain that the optimization problem (1) has a solution if \(\Omega = B(0, R) \).

Note that

\[G(\lambda, x) = \alpha(\lambda) \chi_D + \beta(\lambda) \chi_{D^c} \]

satisfies conditions (3), (4), (10) and (11) if the continuous functions \(\alpha(\cdot) \) and \(\beta(\cdot) \) are positive and decreasing, and \(\alpha(\lambda) \geq \beta(\lambda) \) for every \(\lambda \geq 0 \).
Theorem: Let $\Omega = B(0, R)$, and assume that the conditions (3), (4), (10) and (11) are satisfied. Then the minimization problem (1) is solvable, i.e. there exists $\tilde{D} \subset \Omega$ with $|\tilde{D}| = A$, such that

$$\hat{\lambda} = \lambda(\tilde{D}) = \inf_{D \subset \Omega} \lambda(D).$$
Existence result for nonlinear problem

Theorem: Let \(\Omega = B(0, R) \), and assume that the conditions (3), (4), (10) and (11) are satisfied. Then the minimization problem (1) is solvable, i.e. there exists \(\tilde{D} \subset \Omega \) with \(|\tilde{D}| = A \), such that

\[
\hat{\lambda} = \lambda(\tilde{D}) = \inf_{D \subset \Omega, |D| = A} \lambda(D).
\]

Sketch of proof: For fixed \(\lambda \in J = (0, +\infty) \) we consider the linear eigenvalue problem

\[
-\text{div}(G(\lambda, x) \nabla u) = \mu(\lambda, D)u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega,
\]

where \(\mu(\lambda, D) \) is the principal eigenvalue that depends upon both \(\lambda \) and \(D \).
Applying results of Alvino et al. and Conca et al., the minimization problem

$$\zeta(\lambda) = \inf_{D \subset \Omega, |D| = A} \mu(\lambda, D),$$

admits a radially symmetric solution u for every $\lambda \geq 0$.
Applying results of Alvino et al. and Conca et al., the minimization problem

\[\zeta(\lambda) = \inf_{D \subset \Omega} \mu(\lambda, D), \quad |D| = A \]

admits a radially symmetric solution \(u \) for every \(\lambda \geq 0 \).

Hence, the function \(\zeta : J \rightarrow \mathbb{R} \) is well defined and

\[\zeta(\lambda) = \inf_{D \subset \Omega; \ |D| = A} \int_\Omega G(\lambda, x) |\nabla u|^2 dx. \]

\(u \in H^1_0(\Omega); \ |u|_{L^2(\Omega)} = 1 \)
Applying results of Alvino et al. and Conca et al., the minimization problem

\[\zeta(\lambda) = \inf_{D \subset \Omega, |D|=A} \mu(\lambda, D), \]

admits a radially symmetric solution \(u \) for every \(\lambda \geq 0 \).

Hence, the function \(\zeta : J \rightarrow \mathbb{R} \) is well defined and

\[\zeta(\lambda) = \inf_{D \subset \Omega, |D|=A} \int_\Omega G(\lambda, x) |\nabla u|^2 \, dx. \]

The proof is completed showing that \(\zeta(\cdot) \) has a fixed point.
Based on a modification of the bathtub principle we used a descent approach to numerically determine a minimizing set.
Based on a modification of the bathtub principle we used a descent approach to numerically determine a minimizing set.

Theorem: Let $f \in L^1(\Omega)$ be a nonnegative function and $\mathcal{M} = \{\eta \in L^\infty(\Omega) : \beta \leq \eta(x) \leq \alpha \text{ a.e. in } \Omega, \int_\Omega \eta(x)dx = \alpha A + \beta(|\Omega| - A)\}$. Then the minimization problem

$$\inf_{\eta \in \mathcal{M}} \int_\Omega f(x)\eta(x)dx,$$

is solvable by some $\widehat{\eta}(x) = \alpha \chi_{\widehat{\mathcal{D}}}(x) + \beta \chi_{\widehat{\mathcal{D}}^c}(x)$.
Modified bathtub principle

Based on a modification of the bathtub principle we used a descent approach to numerically determine a minimizing set.

Theorem: Let $f \in L^1(\Omega)$ be a nonnegative function and

$$\mathcal{M} = \{\eta \in L^\infty(\Omega) : \beta \leq \eta(x) \leq \alpha \text{ a.e. in } \Omega, \int_\Omega \eta(x)dx = \alpha A + \beta(|\Omega| - A)\}.$$

Then the minimization problem

$$\inf_{\eta \in \mathcal{M}} \int_\Omega f(x)\eta(x)dx,$$

is solvable by some $\widehat{\eta}(x) = \alpha \chi_{\widehat{D}}(x) + \beta \chi_{\widehat{D}^c}(x)$.

With

$$t = \inf\{s \in \mathbb{R} : |\{x : f(x) \leq s\}| \geq A\}$$

it holds that

$$|\widehat{D}| = A \text{ and } \{x : f(x) < t\} \subseteq \widehat{D} \subseteq \{x : f(x) \leq t\}.$$
The bathtub principle is the basis for constructing a sequence of domains D_n such that $|D_n| = A$ for every n and

$$\lambda(D_{n+1}) \leq \lambda(D_n).$$
Decent approach

The bathtub principle is the basis for constructing a sequence of domains D_n such that $|D_n| = A$ for every n and

$$\lambda(D_{n+1}) \leq \lambda(D_n).$$

Denote by u_n a normalized eigenfunction of problem (1) with $D = D_n$, let $f(x) := |\nabla u_n(x)|^2$ and fix $\lambda > 0$.
The bathtub principle is the basis for constructing a sequence of domains D_n such that $|D_n| = A$ for every n and

$$\lambda(D_{n+1}) \leq \lambda(D_n).$$

Denote by u_n a normalized eigenfunction of problem (1) with $D = D_n$, let $f(x) := |\nabla u_n(x)|^2$ and fix $\lambda > 0$.

By the last theorem there exists $D_{n+1} \subset \Omega$ with $|D_{n+1}| = A$ such that

$$\int_{\Omega} (\alpha(\lambda) \chi_{D_n} + \beta(\lambda) \chi_{D_n^c}) |\nabla u_n|^2 dx \geq \int_{\Omega} (\alpha(\lambda) \chi_{D_{n+1}} + \beta(\lambda) \chi_{D_{n+1}^c}) |\nabla u_n|^2 dx,$$

and D_{n+1} can be obtained from the level set of $f(x) = |\nabla u_n|^2$.
Example 1

\[\Omega = B(0, 1) \subset \mathbb{R}^2, \quad A/|\Omega| = 0.5 \]
\[\alpha(\lambda) = \frac{1}{1 + \lambda}, \quad \beta(\lambda) = \frac{1}{1 + \theta + \lambda}, \quad \theta > 0 \]

\[\lambda_{\text{min}} = 1.95, \theta = 0.01 \]
\[\lambda_{\text{min}} = 0.71, \theta = 10 \]
Example 2

\[\Omega = B(0, 1) \subset \mathbb{R}^3, \quad A/|\Omega| = 0.4 \]

\[\alpha(\lambda) = \frac{1}{1 + \lambda}, \quad \beta(\lambda) = \frac{1}{1 + \theta + \lambda}, \quad \theta > 0 \]

\[\lambda_{\text{min}} = 2.67, \theta = 0.01 \]

\[\lambda_{\text{min}} = 1.16, \theta = 10 \]
Example 3

\[\alpha(\lambda) = \exp(-\lambda), \quad \beta(\lambda) = 3 - 1/\cos(\lambda) \]

\[\Omega = B(0, 1) \subset \mathbb{R}^2, \quad A/|\Omega| = 0.7 \]

\[\Omega = B(0, 1) \subset \mathbb{R}^3, \quad A/|\Omega| = 0.8 \]

\[\lambda_{\min} = 1.20 \]

\[\lambda_{\min} = 1.22 \]