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Abstract

We propose a cubic regularization algorithm that is constructed to deal with non-
convex minimization problems in function space. It allows for a flexible choice of the
regularization term and thus accounts for the fact that in such problems one often has
to deal with more than one norm. Global and local convergence results are established
in a general framework.
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1 Introduction

In broad terms, non-linear optimization algorithms rely on two types of models. A local
model of the functional f that can be treated with techniques of linear algebra, and a
rough model for the error of the local model. State of the art optimization methods usually
employ a quadratic model for f and a rough parametrized model for remaining difference
between the quadratic model and the functional, i.e., the local error. Usually such an error
model is based on a norm ‖ · ‖. In classical trust region methods (cf. e.g. [4]) the error
model is 0 inside a ball of varying radius around the current iterate and +∞ otherwise. In
cubic regularization methods the error model is chosen according to the assumption that
the difference of f and its quadratic model is of third order. Thus, a scaling of ‖ · ‖3 is
taken as a model for the error.

The reason for introducing such an error model (in contrast to a line-search approach)
is the wish to transfer information about the actual error attained at sampling points (i.e.,
at trial corrections) to a whole neighborhood of the current iterate. The implicit assump-
tion behind this reasoning is that the error indeed behaves more or less isotropically with
respect to the chosen norm. One assumes that the obtained sampled information is indeed
representative for the error in the neighborhood. Of course, this cannot be guaranteed in
general, but in those cases where the error model predicts the actual error well, we expect
a stable and efficient behavior of our algorithm. Thus, in particular in large scale problems,
it pays off to choose the error model, and thus the underlying norm, carefully.

In this paper we consider a cubic error model. This idea is not new, and, to the
best knowledge of the authors, has first been proposed by Griewank [9] in an unpublished
technical report. Independently, Weiser, Deuflhard, and Erdmann [16] proposed a cubic
regularization in an attempt to generalize the works [5, 6] on convex optimization to the non-
convex case. Focus was laid on the construction of estimates for the third order remainder
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term. Even more recently Cartis, Gould, and Toint proposed an algorithmic framework,
similar to trust-region methods, but with a cubic regularization term, and provided detailed
first and second order convergence analysis [2] and a complexity analysis [3]. Common idea
of all these methods is the cubic regularization, but apart from this basic idea, the proposed
methods differ significantly.

An important class of large scale optimization problems comes from discretizations of
problems with partial differential equations. These may comprise problems of energy min-
imization, such as nonlinear elliptic problems, or problems from optimal control of partial
differential equations. If one wants to apply cubic regularization methods in this setting,
one is naturally led to versions of these methods that work in function space, and the
need for a convergence theory in function space arises. This can be done in a relatively
straightforward way, if one chooses the framework proposed, e.g., by [16] or [2].

Such a straightforward generalization, however, would ignore one of the main strengths
that lie in the functional analytic treatment of such problems, namely the possibility to work
with more than one norm in order to capture the main features of the problem at hand.
Different choices can be made concerning boundedness of first and second derivatives, and
the limiting behavior of remainder terms. For example, second derivatives of non-convex
functionals are often bounded from below with respect to a strictly weaker norm, than they
are bounded from above. This is, because well posed optimization problems in function
space usually exhibit a subtle analytic structure, consisting of a combination of convexity
and compactness. Usually a careful analysis of the problem at hand reveals the right norms
to be chosen.

The concept of cubic regularization allows to exploit the insights, gained from such
an analysis if one is willing to exchange the usual ‖ · ‖3 term by a more general third
order functional. This will lead to SQP methods that use an error model that can be better
adapted to the problem at hand, and thus provide additional flexibility for problem adapted
optimization methods.

The aim of this paper is to explore this idea and find an algorithmic and theoretic
framework in function space for the flexible choice of cubic regularization terms. Our
framework employs a weak norm | · | and a strong norm ‖ ·‖ which are used to formulate the
required smoothness assumptions on f . Then conditions, depending on these norms, are
imposed on the cubic regularization term which allow for a global and a local convergence
analysis.

In particular, we will introduce our flexible analytic framework in Section 2, which is
designed as a compromise between simplicity and generality. We discuss possible extensions
and give some examples to illustrate the abstract concepts. In Section 3 we develop our
algorithmic framework. It resembles in a couple of points the classical trust region-like
algorithms with the usual fraction of model decrease acceptance criterion and a fraction of
Cauchy decrease condition. However, the latter condition has to be modified to take into
account non-equivalence of norms. Also here it was our aim to leave as much flexibility for
concrete implementations of algorithms, concerning updates of regularization parameters
and computation of steps. Within this framework we show in Section 4 global and local
convergence results. The main challenge here was to identify the theoretically relevant
quantities that have to be considered in order to show convergence.

The present paper represents a step into a new area of research, and we emphasize
again that its focus is to establish a framework for algorithms, rather than propose concrete
implementations. Concrete algorithms are subject to current research, but still go beyond
the scope of the present paper. We postpone this and also the publication of numerical
studies to a future publication.
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2 Functional analytic framework

Consider for a given function f : X → R on a linear space X the minimization problem

min
x∈X

f(x).

Suppose that we can compute for each x ∈ X a quadratic model, consisting of a a linear
functional f ′x : X → R and a bilinear form Hx : X ×X → R:

qx(δx) := f(x) + f ′xδx+
1

2
Hx(δx, δx). (1)

Further, let us denote an upper bound on the error as follows

f(x+ δx)− qx(δx) ≤ wx(δx). (2)

Later, we will impose various smoothness assumptions on f , i.e., make assumptions on the
limiting behavior of wx for small δx. Depending on the smoothness of the problem, wx(λδx)
may be of higher order locally, such as o(λ), o(λ2) or even O(λ3) as λ→ 0. The latter case
occurs, for example, if H is the second Fréchet derivative of f , and Lipschitz. This “generic
case” motivates the construction of the following cubic model for f :

f(x+ δx)− f(x) ≈ mω
x (δx) := f ′xδx+

1

2
Hx(δx, δx) +

ω

6
Rx(δx). (3)

Here Rx is a functional, which is homogenous of order 3:

Rx(λδx) = |λ|3Rx(δx) ∀λ ∈ R (4)

and positive:
Rx(δx) > 0 ∀δx 6= 0.

In (3) the parameter ω > 0 is updated adaptively during the course of the algorithm in
order to globalize the method. Comparison of (2) and (3) yields that (ω/6)Rx can be seen
as a model for wx.

If X is equipped with the norm ‖ · ‖, the classic cubic regularization method uses
Rx(δx) := ‖δx‖3.

However, in most function space problems an adequate analysis requires the use of
several non-equivalent norms. There are a couple of different issues, which each on its own
may require a separate choice. This is why we aim for a theoretical framework that is
flexible with respect to choosing more than one norm.

Assumptions for global convergence. Let us collect the following set of assumptions
for later reference, which are needed to show global convergence, i.e., lim infk→∞ ‖f ′xk‖ = 0
for our algorithm. Among them the only standing assumptions are reflexivity of X and
existence of f ′x in X∗. All other assumptions will be referenced later, when needed.

(i) Let (X, ‖ · ‖) be a reflexive Banach space. The primary norm ‖ · ‖ on X has to be
strong enough that f is continuously differentiable on X. This means that we have
the inequality:

‖f ′x‖ := sup
‖δx‖=1

|f ′xδx| <∞,

and, moreover that xk → x∗ in (X, ‖ · ‖) implies f ′xk → f ′x∗ in (X, ‖ · ‖)∗.
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(ii) The secondary norm | · | of X is used to describe possible non-convexity of the
quadratic model qx. We do not assume completeness of (X, | · |), which allows to
choose | · | strictly weaker than ‖ · ‖. With the help of our two norms we impose a
condition of G̊arding-type:

∃γ > −∞, Γ <∞ : γ|v|2 ≤ Hx(v, v) ≤ Γ‖v‖2. (5)

Hence, Hx is assumed to be bounded below in a different norm than it is bounded
above. Similar conditions appear, for example, in the theory of pseudo-monotone
operators. In the next section we will discuss some examples, where this condition is
fulfilled.

(iii) The main purpose of Rx is to compensate the possible non-convexity of the quadratic
subproblems and to model the remainder term. Thus, we impose the following flexible
boundedness and coercivity condition (without a constant in the left inequality for
simplicity):

|v|3 ≤ Rx(v) ≤ C‖v‖3 ∀v ∈ X (6)

In view of (5) the left inequality guarantees that the cubic subproblems (3) are
bounded from below. The right inequality is mainly needed only in directions of
steepest descent and prevents Cauchy steps from becoming too short.

The chosen set of assumptions presents a compromise between generality and simplicity.
It is slightly stronger than needed by our global convergence theory. For example, concern-
ing smoothness of f we will only make use of the results of the following lemma. Later we
will also discuss possible weakenings of (5) and (6) (cf. (35) and (36), below).

Lemma 2.1. Consider a sequence xk → x∗ and a sequence δvk. Then from Fréchet
differentiability of f and continuity of f ′ at x∗ and (5) it follows for the remainder term,
defined in (2):

lim
k→∞

‖δvk‖+ ωkRxk(δvk) = 0 ⇒ lim
k→∞

wxk(δvk)

‖δvk‖
= 0. (7)

Moreover, (7) implies the following relation:

ωkRxk(δvk)

‖δvk‖
≥W0 > 0 ∧ wxk(δvk)

‖δvk‖
≥ C0 > 0 ⇒ ωkRxk(δvk) ≥ R0 > 0. (8)

Proof. Concerning (7), it follows from a standard result of analysis (cf. e.g. [12, Thm.
25.23], an application of the fundamental theorem of calculus) in combination with (5) that

‖δvk‖ → 0 ⇒ lim
k→∞

wxk(δvk)

‖δvk‖
= 0.

This property is also called strict or strong differentiability of f at x∗. Equation (7) is just
a further weakening of that.

To show (8) we abbreviate rk := ωkRxk(δvk) and dk := ‖δvk‖. By assumption we
conclude rk ≥W0dk and via (7) that rk + dk ≥ D0 > 0. It follows

rk ≥ D0 − dk ≥ D0 −W−1
0 rk ⇒ rk ≥ R0 :=

D0W0

W0 + 1
> 0.
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Global convergence results usually rely on proof by contradiction. The following lemma,
which uses reflexivity of X, will serve as a key facility to obtain this contradiction (see
Lemma 4.3).

Lemma 2.2. Let xk ∈ X be a sequence such that |xk| → 0 and ‖xk‖ is bounded. Then by
reflexivity of X:

xk ⇀ 0 weakly in (X, ‖ · ‖).

Proof. Since (X, ‖ · ‖) is reflexive, xk has a weakly convergent subsequence, say xkj ⇀ x∗.
Since |xkj | → 0 we conclude that for each ε > 0, xkj is eventually contained in a ball of | · |-
radius ε, and thus also x∗. It follows that x∗ = 0. This also shows that every possible weak
accumulation point of our sequence is 0, so by a standard argument the whole sequence
converges weakly to 0.

Remark 2.3. A slight relaxation of our reflexivity assumption on X is conceivable. Let ∗X
be a separable Banach space and define X as its dual: X = (∗X)∗. Under these conditions
Lemma 2.2 would still hold with weak convergence replaced by weak∗ convergence. However,
to be able to apply this lemma later, we would have to impose the condition that the
derivatives f ′xk are all contained in the closed subspace ∗X of X∗ = (∗X)∗∗. Well known
examples for spaces X with these properties are L∞(K), where ∗X = L1(K) and spaces of
measures M(K), where ∗X = C(K).

Assumptions for fast local convergence. If we want to show fast local convergence we
need the following additional assumptions, which strengthen assumption (i) and (ii) from
the above list:

(i)loc Setting δxk = xk+1− xk we need a second order approximation error estimate in (2):

lim
‖xk−x∗‖→0

wxk(δxk)

‖δxk‖2
= 0, (9)

close to a local minimizer, which is fulfilled in particular, if f is twice continuously
differentiable and Hx = f ′′x .

(ii)loc Locally, we have to impose stronger assumptions on Hx. Close to a minimizer we
assume in addition to (5) ellipticity of Hx with respect to the strong norm ‖ · ‖:

∃γ > 0 : γ‖δx‖2 ≤ Hx(δx, δx). (10)

Discussion. In contrast to convergence theory in finite dimensions, for the application of
our framework to concrete problems the choice of function spaces and corresponding norms
is of high interest. Let us thus discuss possible strategies for finding appropriate norms.

- If we are interested in global convergence only, we may choose the strong norm ‖ · ‖
as strong as we wish. This means, if our assumptions hold for some Banach space
(X, ‖ · ‖), then they also hold for a stronger norm, defined on a smaller Banach space,
densely embedded into (X, ‖ · ‖). However, the stronger ‖ · ‖ is chosen, the weaker
is its dual norm, the weaker is our convergence result ‖f ′xk‖ → 0. Thus, we should
choose ‖ · ‖ as weak as the analysis of our problem at hand allows. This means that
‖ · ‖ has to be strong enough to guarantee boundedness of derivatives, (35) and (7).
In highly nonlinear problems (7) will probably be the most restrictive condition.
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- The choice of the norm ‖ · ‖ has direct algorithmic consequences, because directions
of quasi steepest descent (cf. Section 3.2) are defined via this norm. From a prac-
tical point of view, one should choose ‖ · ‖ such that those directions are not too
expensive to compute. For example, for H1-elliptic problems one can use a multigrid-
preconditioner that induces a norm that is equivalent to ‖ · ‖H1 . In any case, it is
advantageous to choose (X, ‖ · ‖) as a Hilbert space, if possible. In this case the di-
rection of steepest descent can be computed by solving a linear operator equation.
Otherwise, this computation is probably a non-linear problem.

- If fast local convergence is the aim, then a good choice for ‖·‖ can usually be found by
analysis of f ′′x under the assumption of second order sufficient optimality conditions
(SSC). Our assumption (10) together with (5) corresponds to classical ellipticity and
continuity assumptions with respect to ‖ ·‖. In other terms, Hx determines the choice
of norm up to equivalence, and v →

√
Hx(v, v) itself defines an equivalent Hilbert

space norm. Algorithmically, the latter is the optimal choice, since then Γ = γ = 1.
An inadequately strong norm would choke off fast local convergence, because (10)
would be unlikely to hold for some γ > 0.

- Very difficult problems, however, only allow for a weak form of the (SSC), including
a so called two-norm discrepancy (see e.g. [13]). In that case it is not possible that a
norm satisfying both (10) and (9) can be found. Rather, a stricter norm ‖|·|‖ has to
be introduced and only the weaker condition

lim
‖|xk−x∗|‖→0

wxk(δxk)

‖δxk‖2
= 0

can be shown to hold. This class of problems is not amenable to fast local convergence.
The problem is that although ‖xk−x∗‖ → 0 can be shown for a minimization method,
the stronger property ‖|xk − x∗|‖ → 0 is not valid in general. Even more, one cannot
even guarantee that ‖|xk − x∗|‖ is well defined for the iterates xk.

- If f is convex, then γ can be set to 0 and thus | · | can be chosen arbitrarily weak,
as long as it defines a norm on X. Nevertheless, Rx should be chosen to model the
remainder terms appropriately.

2.1 Examples

To get a feeling for the peculiarities of this class of problems, we will discuss a couple of
typical examples. This will help to understand the ideas behind our functional analytic
framework. We restrict ourselves to simple settings and dispense with a deeper discussion
in order to keep this section concise.

2.1.1 Two notorious toy examples

The following well known toy examples serve as an illustration, why the choice of two norms
in (5) is quite natural in infinite dimensional optimization.

In contrast to finite dimensional problems, where existence of minimizers is usually
easy to obtain, infinite dimensional problems are notoriously hard to analyse. The main
reason is the lack of compactness of closed and bounded sets in infinite dimensions. By
turning to weakly converging sequences, compactness can often be retained, but only in
connection with convex problems. Still, certain classes of non-convex problems are tractable,
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as long as there are other, additional compactness results available, such as compact Sobolev
embeddings, e.g., E : H1

0 ↪→ L4.
Let us consider the following two functionals:

φ(v) :=

∫ 1

0

1

2
v2 dx, ψ(v) :=

∫ 1

0

(v2 − 1)2 dx.

We observe that φ : L2(Ω) → R is convex, while ψ : L4(Ω) → R is non-convex (with a
w-shape) and both functionals are non-negative.

The following minimization problem, which involves the first derivative u′ = du/dx is
well defined in H1

0 (0, 1):
min

u∈H1
0 (0,1)

f(u) := φ(u′) + ψ(Eu)

The non-convex part of this problem appears together with the compact Sobolev embedding
E, which is the reason why this problem admits a minimizer.

In contrast, the following minimization problem, which is well defined on W 1,4
0 (0, 1):

min
u∈W 1,4

0 (0,1)
f̃(u) := φ(Eu) + ψ(u′)

does not admit a global minimizer. This can be seen by considering a sequence of functions
u′k , which only take the values −1 and +1 and oscillate between them with higher and
higher frequency as k →∞. All these functions minimize ψ with ψ(u′k) = 0. Then uk is a
sequence of saw-tooth functions, which tends to u∗ = 0 (in L2(0, 1)). This in turn implies
φ(uk)→ 0, so that infk φ(Euk)+ψ(u′k) = 0. However, this infimum is not attained, because
ψ(u′∗) = 1 > 0.

In view of (5), let us consider the (formal) second derivatives of f and f̃ , for example
at u∗ = 0:

f ′′u∗(δu, δu) =

∫ 1

0

(δu′)2 − 4δu2 dx ⇒ −4‖δu‖2L2
≤ f ′′u∗(δu, δu) ≤ ‖δu‖2H1

f̃ ′′u∗(δu, δu) =

∫ 1

0

δu2 − 4(δu′)2 dx ⇒ −4‖δu‖2H1 ≤ f̃ ′′u∗(δu, δu) ≤ ‖δu‖2H1 .

We observe that (5) is fulfilled with two different norms for f with the weaker norm mea-
suring the non-convexity. We may set | · | = ‖ · ‖L2

and ‖ · ‖ = ‖ · ‖H1 . For f̃ the choice of
a weaker norm for the lower bound is not possible.

The bottom line is that compactness, the principle on which existence of minimizers for
non-convex problems rests, is closely related to the presence of two norms in (5), where the
lower bound is measured in a weaker norm than the upper bound.

2.1.2 Semi-linear elliptic PDEs

In the following let Ω ⊂ Rd (1 ≤ d ≤ 3) be a smoothly bounded open domain, and x ∈ Ω
the spatial variable. Further, let H1

0 (Ω) be the usual Sobolev space of weakly differentiable
functions on Ω with zero boundary conditions. By the Sobolev embedding theorem there is
a continuous embedding H1

0 (Ω) ↪→ L6(Ω) for d ≤ 3. Further, denote by v ·w the euclidean
scalar product of v, w ∈ Rd.

As a prototypical example we consider the following energy functional of a nonlinear
elliptic PDE:

f(u) :=

∫
Ω

1

2
∇u(x) · ∇u(x) + a(u(x), x) dx.
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Here a(u, x) is a Carathéodory function that is twice continuously differentiable with respect
to u.

We are looking for the solution of the minimization problem

min
u∈H1

0 (Ω)
f(u).

Its (formal) first and second derivatives are given by:

f ′uδu =

∫
Ω

∇u · ∇δu+
∂

∂u
a(u, x)δu dx

f ′′u (δu1, δu2) =

∫
Ω

∇δu1 · ∇δu2 +
∂2

∂u2
a(u, x)δu1δu2 dx

Let us analyse these functionals. We may assume that u ∈ H1
0 (Ω), which implies that∣∣∣∣∫

Ω

∇u · ∇δu dx
∣∣∣∣ ≤ c(u)‖δu‖H1

0

and similarly ∣∣∣∣∫
Ω

∇δu1 · ∇δu2 dx

∣∣∣∣ ≤ ‖δu1‖H1
0
‖δu2‖H1

0
.

Under the assumption that ∂
∂ua(u, ·) ∈ L6/5 and ∂2

∂u2 a(u, ·) ∈ L3/2, we obtain the following
estimates for the second parts of the derivatives via the Hölder inequality:∣∣∣∣∫

Ω

∂

∂u
a(u, x)δu dx

∣∣∣∣ ≤ ‖ ∂∂ua(u, ·)‖L6/5
‖δu‖L6

≤ c(u)‖δu‖H1
0∣∣∣∣∫

Ω

∂2

∂u2
a(u, x)δu1δu2 dx

∣∣∣∣ ≤ ‖ ∂2

∂u2
a(u, ·)‖L3/2

‖δu1‖L6
‖δu2‖L6

Taking these estimates together, we obtain the following results:

|f ′uδu| ≤ c(u)‖δu‖H1
0

c0(u)‖δu‖2L6
≤ f ′′u (δu, δu) ≤ c1(u)‖δu‖2H1

0
,

where c0(u) > −∞ may be negative, and c(u), c1(u) < +∞ are positive. Our first obser-
vation is that f ′ and f ′′ can be bounded (from above) via a strong norm ‖ · ‖ := ‖ · ‖H1

0
,

while it only takes a weaker norm | · | := ‖ · ‖L6
to formulate a lower bound on f ′′. The

choice of the weaker norm can be taken differently. If, for example ∂2

∂u2 a(u, ·) ∈ L∞, then
| · | := ‖ · ‖L2

is sufficient.

2.1.3 Nonlinear optimal control: black-box approach

The aim in (PDE constrained) optimal control is to minimize a cost functional subject to
a (partial) differential equation as equality constraint. For an introduction into this topic,
we refer to the textbooks [11, 14, 10, 15]. Usually, the optimization variable is divided
into a control u which enters the differential equation as data, and the state y, which is
the corresponding solution. This relation can be described by a nonlinear operator via
y = S(u). Elimination of y then yields an optimization problem of the following form:

min
u∈U

f(S(u), u).
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This general problem, however is hardly tractable theoretically, and thus, one restricts
considerations often to the following special case:

f(S(u), u) = g1(S(u)) + g2(u) = g1(S(u)) +
α

2
‖u‖2U .

Here, the convexity of g2 is crucial, but our special quadratic choice for it is a matter of
simplicity.

If S is the solution operator for a non-linear elliptic PDE, and U = L2(Ω), then an
appropriate choice of norms would be

‖v‖ := ‖v‖L2(Ω) |v| := ‖S′(u)v‖H1
0
.

Here | · | depends on u, an issue that is encountered frequently. We will ignore this, however,
for the sake of simplicity. Usually, S′(u) is a compact linear operator, so that | · | is strictly
weaker than ‖ · ‖.

Due to the special form of f , which only allows non-convexity in g1 ◦ S we obtain,
similarly as above the following estimates:

|f ′uδu| ≤ c(u)‖δu‖
c0(u)|δu|2 ≤ f ′′u (δu, δu) ≤ c1(u)‖δu‖2.

3 Algorithmic framework

In this work we will follow the ideas of [16] and consider algorithms that are based on
successive computation of low dimensional search spaces, minimization of a cubic model
within these search spaces, and update of the model parameters. We consider the following
conceptual algorithm for the step computation δx:

Algorithm 3.1. Start with initial guess x0 and ω
repeat (outer loop)

repeat (inner loop)
Compute a non-trivial search space V (cf. Section 3.2)
Compute a minimizer δx of m

ω
xk in V (cf. Section 3.1)

Update the parameter ω (cf. Section 3.4)
until acceptance test satisfied (cf. Section 3.3)
Update: xk+1 = xk + δx

until convergence test satisfied

This general algorithm offers room for a large variety of implementations. They may
differ in the way V is computed, ω is updated, and iterates are accepted. In particular, it
includes the possibility to keep V , while only ω is updated.

In practical implementations, a convergence test (last line of the algorithm) may check,
whether ‖f ′xk+1

‖ is sufficiently small. For our theoretical purpose, where we consider a
possibly infinite sequence of iterates, it is sufficient to check whether f ′xk+1

= 0.

3.1 Directional model minimizers

As a minimal requirement, we suppose that the trial corrections δx minimize m
ω
x along

span{δx}. We call such corrections directional minimizers. They are easy to compute and
have nice properties.
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Existence of a minimizer of m
ω
x may not hold due to a lack of convexity or compactness.

However, if we pick finite dimensional subspaces, the minimizers within these subspaces,
and in particular directional minimizers exist.

Theorem 3.2. For a directional minimizer δx of m
ω
x it holds f ′xδx ≤ 0 and

0 = f ′xδx+Hx(δx, δx) +
ω

2
Rx(δx), (11)

m
ω
x (δx) =

1

2
f ′xδx−

ω

12
Rx(δx) (12)

= −1

2
Hx(δx, δx)− ω

3
Rx(δx). (13)

Proof. By the symmetry of the term Hx(δx, δx) + ω/6Rx(δx), it follows that m
ω
x (−δx) <

m
ω
x (δx) if f ′xδx > 0. Hence, a directional minimizer of m

ω
x satisfies f ′xδx ≤ 0.

As first order optimality conditions for a minimizer δx of m
ω
x we compute:

0 = (m
ω
x )′(δx)v = f ′xv +Hx(δx, v) +

ω

6
R′x(δx)v ∀v ∈ span{δx}. (14)

and thus, by homogeneity (4) of Rx we conclude R′x(δx)v = 3Rx(δx)v and thus (11).
Inserting this into the definition of m

ω
x , we obtain (12) – (13).

The following basic property is a simple consequence:

Lemma 3.3. Let δx(ω) be the directional model minimizers along a fixed direction ∆x for
given ω. We have

lim
ω→∞

δx(ω) = 0. (15)

Proof. Fix ω0 > 0 and denote the corresponding directional minimizer in our direction by
∆x. For any other ω > 0 we have δx(ω) = λ∆x with λ > 0. Inserting this into (11) and
dividing by λ we obtain the following quadratic equation for λ:

0 = f ′x∆x+ λHx(∆x,∆x) + λ2ω

2
Rx(∆x)

Since all coefficients of this quadratic polynomial, except for ω remain constant (15) follows
from a straightforward computation.

3.2 Acceptable search directions

Since we do not want to use degenerate directions for our directional minimizers, we impose
a “fraction of Cauchy decrease” type condition. Classically this involves the explicit com-
putation of a direction of steepest descent ∆xSD in each step of the outer loop. Its purpose
is to establish a link between primal quantities δx and dual quantities f ′x. We emphasize
that steepest descent directions depend on the choice of the norm ‖ · ‖.

In Rn the direction of steepest descent of f is commonly defined via the standard scalar
product of Rn so that the negative gradient is given by ∆xSD = −∇f(x) = −(f ′x)T . In
the infinite dimensional setting this simple computation via transposition is not possible
anymore (how would you “transpose” a function?), and has to be performed via solving the
problem

Find ∆xSD : f ′x∆xSD = −‖f ′x‖‖∆xSD‖ (16)

Usually, this is a non-trivial computation, depending on the choice of the norm. In the case
of Hilbert spaces, it amounts in the computation of the Riesz isomorphism. Moreover, via
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the Cauchy step the choice of the norm ‖ · ‖ will directly influence our algorithm. This
means that a good choice will improve the performance of our algorithm, while a a poor
choice will degrade its performance.

In many cases the analytically straightforward choice of ‖·‖ will lead to a rather expensive
computation of ∆xSD via (16). For example, if ‖ · ‖H1 is used, then ∆xSD has to be
computed from f ′x via the solution of an elliptic partial differential equation. It is sufficient,
however, to compute quasi -steepest descent directions, which satisfy:

Condition 3.4. Let 1 ≤ µ < 0 be fixed. We compute at the beginning of each inner loop a
fixed quasi steepest descent direction ∆xC , which satisfies

f ′x∆xC ≤ −µ‖f ′x‖‖∆xC‖ (17)

Within each inner loop, in which ω is adjusted, quasi Cauchy steps δxC are computed as
directional minimizers of m

ω
x in direction of ∆xC .

Often these steps are much cheaper to compute via a preconditioner than exact steepest
descent directions. In our H1-example this could be one cycle of a multigrid method.

Note that δxC results from a scaling of ∆xC :

δxC = λ(ω)∆xC , λ > 1.

In our flexible framework Rx can be chosen quite independently of ‖ · ‖. This results
in a modification of the classical Cauchy decrease condition. This modification penalizes
irregular search directions, i.e., directions, where ‖δx‖3 � Rx(δx) and thus avoids that
iterates leave (X, ‖ · ‖):

Condition 3.5. Let 1 ≥ β0 > 0 be fixed and δxC be the quasi Cauchy step of m
ω
x . For δx

define

β := β0 max

{
1,

(
Rx(δxC)

‖δxC‖3
· ‖δx‖

3

Rx(δx)

)1/2
}
. (18)

Then choose δx as a directional minimizer of m
ω
x , such that

m
ω
x (δx) ≤ βmω

x (δxC). (19)

The criterion (18) reduces to β = β0, if either δx = δxC , so that δxC is acceptable, or
Rx(·) = ‖ · ‖3, which is the standard case.

Lemma 3.6. The following inequality holds for δxC , as defined in Condition 3.5:

µ‖f ′x‖‖δxC‖ ≤ Hx(δxC , δxC) +
ω

2
Rx(δxC). (20)

Let δx be a directional minimizer that satisfies (19). Then

Rx(δx)

‖δx‖
≥ β2

0

Rx(δxC)

‖δxC‖
. (21)

Proof. From (11) and the fact that δxC is a quasi steepest descent direction, we conclude

µ‖f ′x‖‖δxC‖
(17)

≤ |f ′xδxC | = Hx(δxC , δxC) +
ω

2
Rx(δxC),

which implies (20).
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To show (21) assume first that f ′xδx+ β‖f ′x‖‖δxC‖ ≤ 0. Then

‖f ′x‖‖δx‖ ≥ |f ′xδx| = −f ′xδx ≥ β‖f ′x‖‖δxC‖,

and thus ‖δx‖ ≥ β‖δxC‖. Inserting (18) we obtain(
Rx(δx)

‖δx‖

)1/2

≥ β0

(
Rx(δxC)

‖δxC‖

)1/2

which implies (21) in this case.
Otherwise, we use (12) for δx, (19), and (12) for δxC to compute

ω

6
Rx(δx) = f ′xδx− 2m

ω
x (δx) ≥ f ′xδx− 2βm

ω
x (δxC)

= f ′xδx+ β‖f ′x‖‖δxC‖︸ ︷︷ ︸
≥0

+β
ω

6
Rx(δxC) ≥ βω

6
Rx(δxC),

and thus, Rx(δx) ≥ βRx(δxC). Inserting once again (18) we get(
Rx(δx)

‖δx‖

)3/2

≥ β0

(
Rx(δxC)

‖δxC‖

)3/2

,

and thus by β0 ≤ 1 also (21).

Computing search directions. Let us briefly discuss known ways to compute acceptable
search directions with the aim to explore a couple of possible alternatives. We restrict
ourselves to giving a quick overview. A more detailed development is postponed to a
forthcoming publication.

The simplest way to deal with optimization problems in function space numerically is
to discretize them first, for example by finite elements. The idea of the Ritz method is
to restrict the problem minX f to a finite dimensional finite element subspace Xh ⊂ X
and solve minXh f . It is, however, important to preserve the structure available from
the infinite dimensional problem. In particular, the norms and thus the steepest descent
directions used in the infinite dimensional context should be kept in the finite dimensional
problem, if efficient behavior of our algorithm for fine direcretizations is the aim. We end up
with a large finite dimensional problem, whose size grows, as the discretization parameter h
tends to zero. Thus, for step computations we only consider iterative methods. Canonical
candidates are Krylov-subspace methods, in particular preconditioned (truncated) cg or
Lanczos methods (cf. e.g. [4, Chap. 5] and the references therein). If a reasonable
preconditioner is available for these methods, then it can be used for the computation of a
quasi Cauchy step, as we will explain in the following.

Let (Xh, ‖ · ‖) be a finite dimensional subspace of (X, ‖ · ‖) and consider a symmetric
positive definite preconditioner M−1 : X∗h → Xh, where M : Xh → X∗h satisfies the
following (sometimes called “spectral”) equivalence condition (with constants that, ideally,
do not depend on h).

cM‖v‖2 ≤ (Mv)v ≤ ‖M‖‖v‖2.
Here ‖M‖ is the operator norm of M , i.e., sup‖v‖=1 ‖Mv‖, for which it is well known that
(by symmetry of M) it is the smallest constant for which the right inequality holds. Then
∆xC := M−1f ′x is a quasi steepest descent direction:

f ′x∆xC = (M∆xC)∆xC ≥ cM‖∆xC‖2 ≥
cM
‖M‖

‖f ′x‖‖∆xC‖,
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and thus can be used to compute quasi Cauchy steps in our algorithm. Moreover, if in
addition (10) holds close to a local minimizer, then M is even spectrally equivalent to
Hx, by assumption. Thus, locally we expect efficient behavior of our iterative solver. The
construction of optimal preconditioners, in particular for H1 elliptic problems is a well
established and broad topic of research in numerical analysis and scientific computing (cf.
e.g. [7, 1] and the references therein).

An alternative to solving a discretized optimization problem, i.e., choosing a fixed finite
dimensional subspace Xh of X is to stay within the original infinite dimensional space X.
Of course, also in this case the iterates and the trial corrections still have to be computed
in finite dimensional subspaces, but these subspaces can be enlarged adaptively during the
iteration, so that ultimately the sequence xk may converge to a minimizer x∗ of the original,
infinite dimensional problem, and not just to a solution of the discretized problem. This
means that techniques of adaptive grid refinement and optimization can be merged. We
will not delve into this issue at this moment and leave it as a topic of future research to
work out the details of this approach in the context of our proposed algorithmic framework.
Works in this direction can be found, for example, in [17, 5].

3.3 Acceptance of trial corrections

After a directional minimizer of our model has been computed, and serves as a trial correc-
tion, we have to decide, whether this trial correction is acceptable as an optimization step.
For this purpose we impose the following relative acceptance criterion, which is well known
and popular in trust-region methods. To this end, let us define the ratio of decrease in f
and in the model m

ω
x :

ηk :=
f(x+ δx)− f(x)

m
ω
x (δx)

=
f(x+ δx)− f(x)

m
ω
x (δx)−mω

x (0)
. (22)

Recall that we have chosen m
ω
x in a way that m

ω
x (0) = 0. Since m

ω
x (δx) < 0, we see that

ηk > 0 yields a decrease of f , and ηk = 0 means that f has remained constant. This yields
the following condition:

Condition 3.7. Choose η ∈]0, 1[. A trial correction δx is accepted, if it satisfies the
condition

ηk ≥ η. (23)

Otherwise it is rejected.

3.4 Adaptive choice of ω

In this section we discuss the adaptive choice of ω in m
ω
x (δx). In [2] the choice of ω is

made according to a classification of the steps into “unsuccessful”, “successful” and “very
successful”. Here, in contrast, we compute ω via finite differences, which yields the following
formula

ω :=
6(f(x+ δx)− qx(δx))

Rx(δx)

(2)

≤ 6wx(δx)

Rx(δx)
, (24)

and equip it with some save-guard restrictions. In order to guarantee positivity of ω and to
avoid oscillatory behavior, we assume that the algorithm provides restrictions on updates
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ωold → ωnew to guarantee:

ωnew > 0

ωnew ≤
1

ρ

(
ωold + Cω + 2

Cf ′ |f ′xδx|+ |Hx(δx, δx)|
Rx(δx)

)
for some 0 < ρ < 1. (25)

Positivity of ω is, of course, a basic requirement which guarantees that the term Rx is present
throughout the computation. The second condition (25) inhibits that ω is increased too
quickly, with the result that the next trial correction has to be chosen much shorter than
the previous one. However, in a certain range (corresponding to Cω) the increase can be
performed freely. If Rx is much smaller than the remaining terms of m

ω
x a fast increase of

ω is also possible. Technically, this restriction enters into the global convergence proof in
(50), below.

The following theory will cover algorithms, that respect these restrictions, and increase
ω after a rejected trial correction, according to

After rejected trial correction: ωnew ≥ min{ω,C+ωold} C+ > 1. (26)

Any algorithm that does not allow this, is likely to forbid a useful increase of ω and get
stuck in an inner loop. This restriction and (25) do not interfere, if we take, e.g., ρ ≤ C−1

+ .
Technically this condition is used at the beginning of the proof of Theorem 3.8.

To obtain fast local convergence under most general assumptions we do not increase ω
if ηk is very close to 1. Let us chose η ∈ [η, 1[ and state

If ηk > η then ωnew ≤ ωold. (27)

Finally, we impose the restriction on our algorithm that after an increase of ω wx is essen-
tially estimated from below by ωRx:

If ωnew ≥ ωold : ωnewRx(δx) ≤ Cwwx(δx). (28)

By (24) this is easy to realize, if we impose e.g., ωnew ≤ max{ω, ωold}.
From a practical point of view, we have to take into account that our third order estimate

is subject to round-off errors and can be replaced by a lower order estimate, which involves
first derivatives at slightly higher cost [16] .

In our framework we deliberately dispense with a-priori restrictions like 0 < ω ≤ ω.
Such restrictions can, and should of course, be added in finite precision arithmetic.

3.5 Finite termination of inner loops

Next, we show that each inner loop of our algorithm accepts a finite ω after finitely many
updates and thus terminates finitely. Hence, in the following we consider fixed x and a
sequence ωi of parameters and δxi of trial corrections, computed by our algorithm.

Theorem 3.8. Assume that ‖f ′x‖ 6= 0 and let 1 > η > 0 and β > 0. Moreover, assume
that the lower bounds of (5) and (6) hold. Further, assume that (7) holds for fixed x.

Then:

(i) If a trial correction is rejected, then ω is increased afterwards.

(ii) The inner loop terminates successfully after finitely many iterations.
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Proof. Let us consider a single inner loop. Our aim is to exclude that infinitely many trial
iterates δxi are rejected within this inner loops. To this end we will first show that in such
a case ωi →∞ and then derive a contradiction.

First, we show that if (23) is violated, then ωnew ≥ min{C+, 3/2 − η/2}ωold. Assume
that ωnew < C+ωold. Then violation of (23) implies

ωnew ≥ ω =
6

Rx(δx)
(f(x+ δx)− qx(δx))

=
6

Rx(δx)

(
f(x+ δx)− f(x)−mωold

x (δx) +
ωold

6
Rx(δx)

)
>

6

Rx(δx)
(η − 1)m

ωold
x (δx) + ωold

=
6

Rx(δx)
(1− η)

(
−1/2f ′xδx+

ωold
12

Rx(δx)
)

+ ωold

≥ ((1− η)/2 + 1)ωold.

Thus, ω is increased at least by a fixed factor above 1. Next, assume for contradiction that
(23) fails infinitely often during successive updates from ωold to ωnew. Thus, there is a
sequence ωi → ∞, corresponding Cauchy steps δxCi , and trial corrections δxi. Lemma 3.3
yields δxCi = λ(ωi)∆x

C → 0 and thus

ωiRx(δxCi )

2‖δxCi ‖
(20)

≤ µ‖f ′x‖ −
Hx(λ∆xC , λ∆xC)

‖λ∆xC‖︸ ︷︷ ︸
→0

→ µ‖f ′x‖ > 0.

since ‖f ′x‖ 6= 0. It thus follows from (21) that there exists a constant W0 > 0 such that

ωiRx(δxi)

‖δxi‖
≥W0 > 0. (29)

Since ω is increased at every step, it follows from our restriction (28) that ωi+1Rx(δxi) is
an estimate from below of Cwwx(δxi). Thus, we conclude that

0 < W0 ≤
ωiRx(δxi)

‖δxi‖
≤ ωi+1Rx(δxi)

‖δxi‖
≤ Cwwx(δxi)

‖δxi‖
,

and hence by our differentiability assumption (8) from Lemma 2.1 there is R0 > 0 such that

ωiRx(δxi) ≥ R0. (30)

With this, we compute from (11) (using f ′xδxi = −|f ′xδxi|)

|f ′xδxi|
ωiRx(δxi)

=
Hx(δxi, δxi)

ωiRx(δxi)
+

1

2
.

By (5), if the middle term including the hessian has a negative contribution it vanishes
asymptotically:

lim
k→∞

∣∣∣∣min{Hx(δxi, δxi), 0}
ωiRx(δxi)

∣∣∣∣ (5)

≤ lim
k→∞

|γ||δxi|2

ωiRx(δxi)

(6)

≤ lim
k→∞

|γ|
ω

2/3
i (ωiRx(δxi))1/3

(30)
= 0.
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Thus we conclude that there is an index k0 and a constant M0 > 0 such that

|f ′xδxi|
ωiRx(δxi)

≥M0 > 0 ∀k ≥ k0 (31)

and thus via (29) that also

lim inf
k→∞

|f ′xδxi|
‖δxi‖

> 0. (32)

However, as a consequence of (31), (30), and (6) we have for k ≥ k0:

‖δxi‖
|δxi|

≥ |f ′xδxi|
|δxi|‖f ′x‖

(31)

≥ M0
ωiRxi(δxi)

|δxi|‖f ′x‖
(6)

≥ M0
ωiRx(δxi)

2/3

‖f ′x‖
≥ M0R

2/3
0

‖f ′x‖
ω

1/3
i →∞.

Thus, |δxi|/‖δxi‖ → 0 and by Lemma 2.2 we conclude weak convergence δxi/‖δxi‖⇀ 0 in
(X, ‖ · ‖). This, however, implies

lim
k→∞

|f ′xδxi|
‖δxi‖

= 0.

in contradiction to (32).

4 Convergence Theory

In this section we will establish first order global convergence, and second order local conver-
gence results. In the following we will consider a sequence xk, generated by our algorithm,
corresponding derivatives f ′xk , and accepted corrections δxk with parameters ωk. In the
whole section we exclude the trivial case that f ′xk = 0, for some k, which leads to fi-
nite termination of our algorithm. Moreover, we may assume that the sequence f(xk) is
bounded from below. Otherwise our algorithm fulfills its purpose by generating a sequence
f(xk)→ −∞.

4.1 Global Convergence

Under mild assumptions we will show that our algorithm cannot converge to non-stationary
points, while slightly stronger assumptions yield ‖f ′xk‖ → 0. Our technique will be to derive
a contradiction to the case that ‖f ′xk‖ remains bounded away from zero. Taking this into
account, we see that our theory will still work, if all algorithmic constants (η, η, µ, β0, . . . )
depend on ‖f ′x‖ and degenerate only if ‖f ′x‖ → 0.

The first two lemmas that we will prove are based on the acceptance criteria (23) (actual
vs. predicted reduction) and (19) (modified fraction of Cauchy decrease) only. Recall that
δxCk are quasi Cauchy steps, defined in Condition 3.4.

Lemma 4.1. Assume that the sequence f(xk) is bounded from below. Assume that the
successful steps δxk are chosen as directional minimizers, such that (23) and (19) hold.
Then

∞∑
k=0

‖f ′xk‖‖δx
C
k ‖ <∞ (33)

∞∑
k=0

ωkRxk(δxCk ) <∞,
∞∑
k=0

ωkRxk(δxk) <∞. (34)
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Proof. We use (23) and (19) to compute

f(xk+1)− f(xk)
(23)

≤ ηm
ωk
xk (δxk)

(11)
= η

(
1

2
f ′xkδxk −

ωk
12
Rxk(δxk)

)
(19)

≤ ηβ0m
ωk
xk (δxCk )

(11)
= ηβ0

(
1

2
f ′xkδx

C
k −

ωk
12
Rxk(δxCk )

)
≤
ηβ0

2
f ′xkδx

C
k

(17)

≤ −
µηβ0

2
‖f ′xk‖‖δx

C
k ‖ ≤ 0.

By monotonicity and boundedness

∞∑
k=0

f(xk+1)− f(xk) = f − f(x0) > −∞,

and by our chain of inequalities we conclude (33) and (34).

The main observation here is that ‖f ′xk‖‖δx
C
k ‖ → 0, and it remains to prevent ‖δxCk ‖

from becoming too small, compared to ‖f ′xk‖ in order to force ‖f ′xk‖ to become small. The
extraordinary role of δxCk has its origin in the acceptance criterion (19), which compares all
steps to the Cauchy steps.

To obtain a quick understanding of the situation, take a look at (20) and observe the
following relation:

µ‖f ′xk‖
(20)

≤ Hxk(δxCk , δx
C
k )

‖δxCk ‖
+
ωk
2

Rxk(δxCk )

‖δxCk ‖
.

We would like to exclude that case that ‖f ′xk‖ is bounded away from zero, which in turn
implies ‖δxCk ‖ → 0 by (33). Taking into account the upper bounds (5) for Hx and (6) for
Rx, we see that

lim
k→∞

Hxk(δxCk , δx
C
k )

‖δxCk ‖
= 0, (35)

lim
k→∞

Rxk(δxCk )

‖δxCk ‖
= 0. (36)

In fact for all the following results we may replace (5) and (6) by these weaker results.
This might be a useful generalization in the case where regularity theory yields a-priori
bounds on δxC in a stronger norm than ‖ · ‖. In the context of partial differential equations
additional regularity results are frequently encountered (cf. e.g. [8]). In this case we may
gain additional flexibility in the choice of Rx.

In view of (35) and (36), which exclude that our iteration is choked off by Hx and Rx
being overly large, the “bad case” can only happen, if ωk is increased too rapidly. Under
smoothness assumptions on f that imply boundedness of ωk (a global Lipschitz condition
on f ′′) we would be finished at this point. To cover the more general case (see (42) and
(43), below), we have to invest some more theoretical work. Let us start with collecting
some simple consequences of ‖f ′xk‖ being bounded away from 0:

Lemma 4.2. Suppose that xk is a sequence, such that f(xk) is bounded from below. For
fixed ν > 0 define the set

Lν := {k : ‖f ′xk‖ ≥ ν}.

Assume that (35) and (36) hold for δxCk along the sequence of iterates xk for k ∈ Lν .
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For iteration k let δxk be the accepted step, and δvk any directional minimizer of m
ωk
xk

that satisfies (19). Then

inf
k∈Lν

ωkRx(δvk)

‖f ′xk‖‖δvk‖
> 0, (37)∑

k∈Lν
‖δxk‖ <∞, (38)

lim
k∈Lν→∞

ωk =∞. (39)

Proof. The assertions are trivial or void, if Lν is finite, so it remains to consider the infinite
case.

From ‖f ′xk‖ ≥ ν we get ‖δxCk ‖ → 0 due to (33) and thus, via (20) and (35):

lim
k→∞

ωkRxk(δxCk )

2‖f ′xk‖‖δx
C
k ‖

(20)

≥ lim
k→∞

(
µ− Hxk(δxCk , δx

C
k )

‖f ′xk‖‖δx
C
k ‖︸ ︷︷ ︸

(35)→ 0

)
= µ. (40)

By (21) we also have

lim inf
k→∞

ωkRxk(δvk)

‖f ′xk‖‖δvk‖
≥ 2β2

0 > 0

and thus (37). Now (38) follows from (34) and (37) via the computation

∑
k∈Lν

‖f ′xk‖‖δxk‖ =
∑
k∈Lν

ωkRxk(δxk)

(
ωkRxk(δxk)

‖f ′xk‖‖δxk‖

)−1

≤
∑
k∈Lν

ωkRxk(δxk)

(
inf
k∈Lν

ωkRxk(δxk)

‖f ′xk‖‖δxk‖

)−1

<∞,

and the fact that ‖f ′xk‖ is bounded away from 0. By (40) we compute, using ‖δxCk ‖ → 0
and (36):

2‖f ′xk‖ω
−1
k

(40)

≤ c
Rxk(δxCk )

‖δxCk ‖
(36)→ 0.

From that (39) follows by the fact that ‖f ′xk‖ is bounded away from 0.

An important conclusion of this lemma is that if Lν = N, then by (38) xk is a Cauchy
sequence in (X, ‖ · ‖), and thus xk converges to some limit x∗. Thus, to exclude this case
in a proof by contradiction we may always assume that xk → x∗.

Up to now, the smoothness of f and the lower bound in the G̊arding inequality (5) did
not enter our considerations. In the next lemma, which is the main step of our study, we
will take this and the save-guard restrictions (28) and (25) on the update of ω into account.
We will perform this step under the most general assumptions.

We are interested in the case that our algorithm converges to a non-stationary point.
We show in this case that the set

I := {k ∈ N : the inner loop at xk computes at least one rejected trial correction }

is infinite. Moreover, we will see that in this case either f is not smooth enough, or Hx is
not regular enough. Two cases, which are excluded by our set of assumptions in Section 2.
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Lemma 4.3. Suppose that xk → x∗ in (X, ‖ · ‖), such that f(xk) is bounded from below
and f ′xk → f ′∗ 6= 0 in (X, ‖ · ‖)∗. Assume further that along xk (35) and (36) hold for δxCk
and the smoothness relation (7) holds for δxk.

Then I is infinite, and for the sequence of the last rejected trial corrections δxlk in each
inner loop for k ∈ I there exists a constant W0 > 0, such that:

Cwwxk(δxlk)

‖δxlk‖
≥ ωkRxk(δxlk)

‖δxlk‖
≥W0 > 0, (41)

Additionally, for any infinite subset of I at least one of the following conditions is violated:

(i) Smoothness: (8) holds for δxlk, along xk, i.e.,

(41) implies ∃R0 > 0 : ωkRxk(δxlk) ≥ R0. (42)

(ii) Boundedness of hessians from below along rejected directions:

∃γl > −∞ : Hxk(δxlk, δx
l
k) ≥ γl|δxlk|2. (43)

Proof. By our assumptions the sequence f(xk) is bounded from below and the sequence
‖f ′xk‖ converges to a non-zero value and thus is bounded above and bounded away from 0.
Then by (35) Lemma 4.2 holds for Lν = N for some ν > 0, and in particular ωk is increased
infinitely many times due to (39). An increase of ω can occur in two cases: first, after an
accepted trial correction δxk, second after a rejected trial correction. In the first case, i.e.,
ωk+1 ≥ ωk, we compute by (28):

ωkRxk(δxk) ≤ ωk+1Rxk(δxk)
(28)

≤ Cwwxk(δxk)

and thus, by (37) we conclude:

Cwwxk(δxk)

‖f ′xk‖‖δxk‖
(28)

≥ ωkRxk(δxk)

‖f ′xk‖‖δxk‖
(37)

≥ c.

It follows that there is a constant W̃0 > 0 independent of k, such that

wxk(δxk)

‖δxk‖
≥ W̃0 > 0 (44)

for every k after which ωk was increased. However, since ‖δxk‖+ ωkRxk(δxk)→ 0 by (38)
and (34), (7) implies that the left hand side of (44) tends to 0 along the sequence xk → x∗.
Thus, the first case can only happen finitely many times.

Hence, the second case must occur infinitely many times, i.e., there must be infinitely
many rejected trial corrections, and thus infinitely many loops in which a trial correction is
rejected. This means that I is a set of infinite size. We will assume that (i) and (ii) hold,
at least for an infinite subset J of I, and derive a contradiction. We divide the remaining
argumentation into 3 steps. In the following we will consider k ∈ J only.

Step 1: For the inner loop k at xk consider the last rejected correction δxlk with cor-
responding regularization parameter ωlk. Recall that δxlk, like every trial correction, is a

directional minimizer of m
ωlk
xk . After rejection of δxlk the next regularization parameter cor-

responds to the final accepted trial correction in this loop δxk and is thus denoted by ωk.
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Let δxC,lk be the Cauchy step for ωlk and δxCk the Cauchy step for ωk. Since by Theorem 3.8
ωk ≥ ωlk, we have

δxC,lk = λδxCk with λ ≥ 1.

Then by (21) and (37) for δvk = δxCk , taking into account the boundedness properties of
‖f ′xk‖, we get a constant c > 0, such that

ωkRxk(δxlk)

‖δxlk‖
(21)

≥ β2
0

ωkRxk(δxC,lk )

‖δxC,lk ‖
=
ωkRxk(λδxCk )

‖λδxCk ‖

=
ωkλ

3Rxk(δxCk )

λ‖δxCk ‖
≥ β2

0

ωkRxk(δxCk )

‖δxCk ‖
(37)

≥ c‖f ′xk‖ ≥ cν > 0.

(45)

By (28) this implies that there is a constant W0 > 0, such that

Cwwxk(δxlk)

‖δxlk‖
≥ ωkRxk(δxlk)

‖δxlk‖
≥W0 > 0, (46)

This and (46) in turn implies by (42) (cf. also (8) in Lemma 2.1) that there is a constant
R0 > 0, such that for these rejected trial corrections

ωkRxk(δxlk) ≥ R0 > 0, (47)

in contrast to (34), which holds for accepted trial corrections.
Step 2: Now we are in the position to show that there are k0 and M0 such that

|f ′xkδx
l
k|

ωkRxk(δxlk)
≥M0 > 0 ∀k ∈ J : k ≥ k0. (48)

Here our save-guard restriction for the update ωlk → ωk (25) comes into play, which reads
now:

ρ

2
ωkRx(δxlk) ≤ ωlk + Cω

2
Rx(δxlk) + Cf ′x |f

′
xδx

l
k|+ |Hx(δxlk, δx

l
k)|. (49)

We insert this relation into (11), the optimality condition for directional minimizers:

|f ′xkδx
l
k| = −f ′xkδx

l
k

(11)
=

ωlk
2
Rxk(δxlk) +Hxk(δxlk, δx

l
k)

(49)

≥ ρωk − Cω
2

Rxk(δxlk)− Cf ′ |f ′xδxlk| − |Hxk(δxlk, δx
l
k)|+Hxk(δxlk, δx

l
k)

=
ρωk − Cω

2
Rxk(δxlk)− Cf ′ |f ′xδxlk|+ 2 min{Hxk(δxlk, δx

l
k), 0},

so that we obtain:

(1 + Cf ′)|f ′xkδx
l
k|

ωkRxk(δxlk)
≥ ρ

2
− Cω

2ωk
− 2

∣∣∣∣min{Hxk(δxlk, δx
l
k), 0}

ωkRxk(δxlk)

∣∣∣∣ . (50)

Since ωk →∞, the second term on the right hand side of (50) tends to zero. Moreover, by
(43), (6), and (47) the same is true for the third term:

lim
k∈J→∞

∣∣∣∣min{Hxk(δxlk, δx
l
k), 0}

ωkRxk(δxlk)

∣∣∣∣ (43)

≤ lim
k∈J→∞

|γl||δxlk|2

ωkRxk(δxlk)

(6)

≤ lim
k∈J→∞

|γl|
ωkRxk(δxlk)1/3

(47)

≤ lim
k∈J→∞

|γl|
ω

2/3
k R

1/3
0

(39)
= 0.
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Hence, in the limit the left hand side of (50) is strictly positive, which implies (48).

Step 3: Let us finally derive our contradiction. Multiplication of (48) with the middle
term in (46) implies on the one hand

|f ′xkδx
l
k|

‖δxlk‖
≥M0W0 > 0 ∀k ∈ J : k ≥ k0. (51)

On the other hand due to (48), (6), and (47) we have for k ∈ J , k ≥ k0:

‖δxlk‖
|δxlk|

≥
|f ′xkδx

l
k|

‖f ′xk‖|δx
l
k|

(48)

≥ M0
ωkRxk(δxlk)

‖f ′xk‖|δx
l
k|

(6)

≥
(

M0

‖f ′xk‖
(ωkRxk(δxlk)︸ ︷︷ ︸
≥R0 by (47)

)2/3

)
ω

1/3
k
→∞

→∞,

and thus

lim
k∈J→∞

|δxlk|
‖δxlk‖

= 0.

Via Lemma 2.2 we conclude that the normalized sequence δxlk/‖δxlk‖ converges to 0 weakly
in X. Since f ′xk → f ′∗ strongly, we obtain a contradiction to (51):

lim
k∈J→∞

|f ′xkδx
l
k|

‖δxlk‖
= f ′∗0 = 0.

This is due to a standard result in functional analysis which states that the duality product
is continuous with respect to strong convergence in the dual space and weak convergence
in the primal space.

The following conclusions are more or less direct consequences of the previous lemma.
For ease of reading we use slightly stronger, but more concise assumptions.

Theorem 4.4. Let x∗ ∈ X. Assume that f is Fréchet differentiable in a neighborhood of
x∗ and f ′ is continuous at x∗. Further, assume that xk → x∗ in (X, ‖ · ‖) and that the
G̊arding inequality (5) holds along xk. Moreover, assume that Rx satisfies (6).

Then
f ′x∗ = 0.

Proof. Since xk → x∗, also f ′xk → f ′x∗ in X∗. Moreover, (35) and (43) hold by (5). If
f ′x∗ 6= 0, then (41) and (42) contradict (7).

If xk does not converge, we can still show convergence properties for f ′, following the
standard pattern that continuity of f ′ yields subsequential convergence of f ′ to 0, while
uniform continuity yields convergence of the whole sequence.

Theorem 4.5. Let f be Fréchet differentiable. Assume that f(xk) is bounded from below
and Hx satisfies the G̊arding inequality (5). Further, assume that Rx satisfies (6).

(i) If f ′ is continuous, then
lim inf
k→∞

‖f ′xk‖ = 0. (52)

(ii) If f ′ is uniformly continuous, then

lim
k→∞

‖f ′xk‖ = 0.
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Proof. For the purpose of contradiction we assume that ‖f ′xk‖ is bounded away from zero.
Then xk is a Cauchy sequence in X by (38), and hence convergent to a limit point x∗ by
completeness of X.

Under the assumptions of (i), this implies ‖f ′xk‖ → 0 by Theorem 4.4. This is a contra-
diction our premise that ‖f ′xk‖ is bounded away from zero, and hence (52) must hold.

It remains to assert that Lν is finite under the assumptions of (ii) for any ν > 0. For
this we use a standard trick (cf. e.g. [4, Thm 6.4.6]), exploiting uniform continuity of the
function x→ f ′x. For any index i ∈ Lν choose the first index k(i) ∈ N \ Lν/2 that satisfies
k(i) > i. Then {j : i ≤ j < k(i)} ⊂ Lν/2 and by (38)

lim
i→∞

‖xi − xk(i)‖ ≤ lim
i→∞

j<k(i)∑
j=i

‖δxj‖ = 0

and thus, if Lν was infinite, ‖f ′xi − f
′
xk(i)
‖ → 0. However, eventually

‖f ′xi‖ ≥ ν,
‖f ′xk(i)‖ ≤ ν/2.

Hence, we have a contradiction and Lν must be finite. This argument holds for every ν > 0
and thus implies limk→∞ ‖f ′xk‖ = 0.

4.2 Local convergence

Next we consider local convergence of our method towards a local minimizer. We will
show in this context that damping factors λ approach 1 close to a local minimizer under
additional assumptions. Whether this finally leads to local superlinear convergence or not
depends mostly on the actual computed search directions δxk. It it well known that Newton
directions and certain quasi-Newton directions lead to fast local convergence. Here we will
content ourselves with showing that our globalization scheme does not interfere with any
method to compute search directions.

Let us start with some auxiliary estimates, which capture the effect of positive curvature
of Hx along a directional minimizer. Theses estimates do not rely on a fraction of Cauchy
decrease condition:

Lemma 4.6. Let δx be a directional minimizer and Hx(δx, δx) = γ‖δx‖2 with γ ≥ 0. Then
we have the following estimates:

m
ω
x (δx) ≤ −γ

2
‖δx‖2 (53)

γ‖δx‖ ≤ ‖f ′x‖. (54)

Proof. Equation (53) directly follows from (13), taking into account positivity of Rx.
Equation (11) yields

γ‖δx‖2 ≤ γ‖δx‖2 +
ω

2
Rx(δx) = Hx(δx, δx) +

ω

2
Rx(δx) = −f ′xδx ≤ ‖f ′x‖‖δx‖

and thus (54).

Our basic theoretical framework comprises the following assumptions, which we impose
throughout the whole section. For fast local convergence we will later impose further
smoothness assumptions.
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Assumption 4.7. Let x∗ ∈ X be a local minimizer, and assume that there exists a
neighborhood U of x∗ with the following properties:

(i) The assumptions of Theorem 4.5(i) on global convergence hold in U .

(ii) For ε > 0 define the local level sets

Lε := {x ∈ U : f(x) ≤ f(x∗) + ε} ⊂ U.

Assume that these sets form a neighborhood base of x∗, i.e., each neighborhood of x∗
contains one of these level sets (and hence all with smaller ε). This implies that x∗ is
a local minimizer. The converse is not true, in general.

(iii) We have the estimate

∃α <∞ : f(x)− f(x∗) ≤ α‖f ′x‖‖x− x∗‖ ∀x ∈ U.

This holds with α = 1, if f is convex in U , and implies, together with (ii) that x∗ is
an isolated critical point.

(iv) The ellipticity assumption (10) for Hx holds in U :

∃γ > 0 : γ‖δx‖2 ≤ Hx(δx, δx).

If f is twice differentiable and Hx = f ′′x , then this implies convexity of f in U and
thus (iii).

It follows from continuity of f that the interior of Lε is non-empty, and (ii) implies
via differentiability of f that f ′x∗ = 0. Alternatively to (iii) we could assume continuous
invertibility of the mapping x→ f ′x.

First we show that if our algorithm comes close to a local minimizer with the above
properties, then it will converge towards this minimizer.

Lemma 4.8. If Assumption 4.7 holds, then there exists ε0 > 0 such that if x ∈ Lε, and δx
is an acceptable directional minimizer then x+ δx ∈ Lε for all 0 < ε < ε0.

Proof. By Assumption 4.7(ii) we can choose for any neighborhood V ⊂ U of x∗ an ε > 0,
such that Lε ⊂ V . Recall that Hx is uniformly elliptic on U and thus on V with a constant
γ > 0. By continuity of f ′x we can in turn choose V , such that ‖f ′x‖ ≤ γ−1ν for every x ∈ V ,
for every given ν > 0. It follows by (54) that ‖δx‖ ≤ ν for every acceptable directional
minimizer, and thus x+δx ∈ U , as long as V and ν have been chosen sufficiently small, and
x ∈ Lε ⊂ V . Thus, we conclude by the descent property that x+ δx ∈ Lε ⊂ V , again.

Theorem 4.9. Suppose that Assumption 4.7 holds. If the sequence of iterates, generated
by our algorithm comes sufficiently close to x∗, then it converges to x∗.

Proof. By Lemma 4.8 the sequence, generated by our algorithm remains in Lε, as long as
one iterate comes sufficiently close to x∗. Thus, ‖xk − x∗‖ remains bounded. Theorem 4.5
implies ‖f ′xki‖ → 0, at least for a subsequence xki , and thus

f(xki)− f(x∗) ≤ α‖f ′xki‖‖xki − x∗‖ → 0.

So, for each ε > 0, xki ∈ Lε, eventually. Since xk does not leave level sets by Lemma 4.8,
the same holds for the whole sequence. Since the level sets form a neighborhood base of
x∗, we conclude that xk → x∗.
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Finally, we will study conditions under which our method blends into an undamped
method, close to x∗. Let δx be some directional minimizer of the model function m

ω
x . If

Hx is elliptic, then a minimizer ∆x of the quadratic problem min f ′xv + 1/2Hx(v, v) with
respect the search direction δx is well defined. It can be interpreted as an undamped step,
or as the step that results from the choice ω = 0.

The quotient

λ :=
‖δx‖
‖∆x‖

≤ 1

can be interpreted as a damping factor. In fact, by definition we have δx = λ∆x.
For the following we will only need a slightly weaker version of the upper bound of (6):

xk → x∗ implies lim
k→∞

Rxk(δxk)

‖δxk‖2
= 0, (55)

which is, however, stronger than (36), our minimal requirement for global convergence.

Lemma 4.10. Let xk be any sequence of iterates, such that Hxk are uniformly elliptic.
Then

lim
k→∞

ωkRxk(δxk)

‖δxk‖2
= 0 ⇒ lim

k→∞
λk = 1.

Proof. To show the above equivalence we insert δxk and ∆xk into (11) and set

γk :=
Hx(δxk, δxk)

‖δxk‖2
=
Hxk(∆xk,∆xk)

‖∆xk‖2
.

We obtain from (11) (with ω = 0 for ∆x):

‖δxk‖
(
ωk
2

Rxk(δxk)

‖δxk‖2
+ γk

)
(11)
= |f ′xkδxk|/‖δxk‖

= |f ′xk∆xk|/‖∆xk‖
(11)
=
ω=0
‖∆xk‖γk

By assumption, the sequence γk is positive and bounded away from 0 and thus we obtain
by division

1 ≥ λk =
‖δxk‖
‖∆xk‖

=
γk

ωk
2

Rxk (δxk)

‖δxk‖2 + γk

The right hand side tends to 1, if
ωkRxk (δxk)

‖δxk‖2 → 0.

The following result is an immediate consequence:

Corollary 4.11. Let xk be a converging sequence of iterates, such that Hxk are uniformly
elliptic, and suppose that (55) holds. If ωk is bounded, then limk→∞ λk = 1.

To show boundedness of ωk we consider the acceptance indicators ηk as defined in (22)
and show that they tend to 1 asymptotically if the quadratic model is really a second order
approximation of f in the sense of (9):

lim
k→∞

wxk(δxk)

‖δxk‖2
= 0.

It can be shown that such a condition holds, if f is twice continuously differentiable in a
neighborhood of x∗ and Hx = f ′′x .
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Proposition 4.12. Suppose that xk → x∗ and assume that the second order approximation
error estimate (9) holds. Then, independently of the choice of ωk ≥ 0 we conclude for ηk,
defined in (22):

lim inf
k→∞

ηk ≥ 1

for any corresponding sequence of directional minimizers δxk.

Proof. Since, by assumption xk → x∗, we also have ‖δxk‖ → 0. Thus, by (9) we conclude

lim
k→∞

wxk(δxk)

‖δxk‖2
= 0, while by (53) we have

m
ωk
xk (δxk)

‖δxk‖2
≤ −γ

2
.

Thus, taken together, we obtain

lim
k→∞

wxk(δxk)

m
ωk
xk (δxk)

= 0.

Hence, by definition (recall that m
ωk
xk (δxk) < 0)

lim inf
k→∞

ηk = lim inf
k→∞

f(xk + δxk)− f(xk)

m
ωk
xk (δxk)

≥ lim inf
k→∞

m
ωk
xk (δxk)− ωk

6 Rxk(δxk) + wxk(δxk)

m
ωk
xk (δxk)

≥ lim
k→∞

(
1 +

wxk(δxk)

m
ωk
xk (δxk)

)
= 1.

Taking all facts together, we obtain our final result:

Theorem 4.13. In addition to Assumption 4.7 suppose that (55) and (9) hold in U along
xk generated by our algorithm. If xk comes sufficiently close to x∗ then xk → x∗ and
λk → 1.

Proof. By Theorem 4.9 we conclude that xk → x∗ and ‖δxk‖ → 0. By Proposition 4.12
eventually every trial correction is accepted with some ηk > η. Hence, by our algorithmic
restriction (27) ωk is not increased anymore and it follows that ωk is bounded above. This
and (55), inserted into Lemma 4.10 yield the desired result.
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